
1 Introduction
The data contains descriptive attributes of digitized images of a process known as fine 
needle aspirate (FNA) of breast mass. We have a total of 29 features that were 
computed for each cell nucleus with an ID Number and the Diagnosis (malignant and 
benign). 

Image of small cell carcinoma 

Source: By Nephron [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) or 
GFDL (http://www.gnu.org/copyleft/fdl.html)], from Wikimedia Commons 
(https://commons.wikimedia.org/wiki/File:Small_cell_lung_cancer_-_cytology.jpg)

1.1 Project Extension: BIOLOGICAL MASS DATA
The following tutorial will cover the main ideas for analyzing a typical data-set. 
However, after this has been done, the next step would be to incorporate OMICS MASS
DATA. For example, you could be given genomics sequencing data for each patient 
from which you can infer even more information. The main learning effect you should 
get from that is the following: 

In bioinformatics (or computational biology) you very often need to analyze clinical 
data-sets, mainly to classify a patient’s status or to derive disease-specific features. 
What is crucial to understand is that this data might look “small”, but many of the 
variables are actually coming from some “big” data analysis, where potentially many 
TBs of raw data has been analyzed. This could be some omics analysis, or some image
analysis, where one image often has several GBs. 

https://commons.wikimedia.org/wiki/File:Small_cell_lung_cancer_-_cytology.jpg
http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Small_cell_lung_cancer_-_cytology.jpg


PART ONE: Exploratory Analysis

2 PART I: Exploratory Analysis 
An important process in Machine Learning is doing an Exploratory Analysis to get 
a feel for your data. Creating visuals can help people understand the data-set and 
allow for digestable pieces of information that sometimes code and predictive 
analytics wouldn't allow. Often times we will try to jump into the predictive modeling, 
but it helps us create narratives which will allow us to give context to people who are 
not as driven by data. 

3 Visual Exploratory Analysis 
It is always a good idea to plot the individual fratures of the data with respect to the 
available classes to get a first expression about the distributions. The following plot 
gives a first impression whether we could tell apart the two groups (shown in green 
and red) just based on individual features.

3.1 Overview: Nucleus Features vs. Diagnosis



3.1.1 Observations
1. The mean values of cell radius, perimeter, area, compactness, concavity and 

concave points can be used in classification of the cancer. Larger values of 
these parameters tends to show a correlation with malignant tumors.

2. The mean values of texture, smoothness, symmetry or fractal dimension do not 
show a particular preference of one diagnosis over the other. In any of the 
histograms there are no noticeable large outliers that warrants further cleanup.

3.2 Scatterplot Matrix
For this visual we used some variables that were indicators of being influential from 
the last analysis.

Terminal Output

You see a matrix of the visual representation of the relationship between the first 4 
“mean” variables. 

Within each scatterplot we can color the two classes of Diagnosis, which we can 
clearly see that we can sometimes easily distinguish the difference between 
Malignant and Begnin. As well as some variable interactions have an almost linear 
relationship. 

Of course these are just 2-dimensional representations, but it is still interesting to see 
how variables interact with each other in our data-set. 



3.3 Pearson Correlation Matrix
The next visual gives similar context that the last visual provided, and it is called the 
Pearson Correlation Matrix. 

Variable correlation within a Machine Learning context doesn't play as an important 
role as say linear regression, but there can still be some dangers when a data-set has 
too many correlated variables. 

When two features (or more) are almost perfectly correlated in a Machine Learning 
setting then the inclusion of these features does not add addition information to your 
process. This then has the potential to hurt your algorithm's accuracy, since we are 
potentially utilizing a large feature space that can cause what is known as the Curse of
Dimensionality. Thus feature extraction would help reduce the amount of noise in your
feature space, see principal component analysis, or t-distributed stochastic neighbor 
embedding. 

Many of our algorithms are also very computationally expensive, so utilizing a 
dimension reduction algorithm would also help performance and computational time. 

Terminal Output

We can see that our data-set contains mostly positive correlation, as well as re-
iterating to us that the 5 dependent variables we featured in the Scatterplot Matrix 
have strong correlation. Our variables don't have too much correlation so we won't go 
about doing feature extraction processes like Principal Component Analysis (PCA), but 
you are more welcomed to do so (you will probably get better prediction estimates). 

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality


3.4 Boxplots
Next, we will look at boxplots of the data to show the high variance in the distribution 
of our variables. This will help drive home the point of the need to do some 
appropriate transformation for some models we will be employing. This is especially 
true for Neural Networks. 

Terminal Output

Not the best picture but this is a good starting point for the next step in our Machine 
learning process.

3.4.1 Normalization
Here we used a custom function to set the minimum of 0 and maximum of 1 to help 
with some machine learning applications later on in this report. Notice that we will use 
this function only for the visualization of my data-set. Important to note because if we 
were to use this transformation, during my machine learning process we would be 
guilty of the process called, data leakage, more on this later in the neural networks 
section. 



3.4.2 Box Plot of Transformed Data
Now to further illustrate the transformation let's create a boxplot of the scaled data-
set, and see the difference from our first boxplot. 

Terminal Output

There are different forms of transformations that are available for machine learning 
and we suggest you research them to gain a better understanding as to when to use a 
transformation. But for this project we will only employ the transformed dataframe on 
Neural Networks. 



Part II: Machine Learning

4 PART II: Machine Learning for Predictive Modeling
In the following, we will use a well-established Machine Learning techniques, knows 
as (Bagging) Random Forrest build a model that learn from our data and generate a 
model that allows prediction of unknown data.

4.1 Prerequisites: Training and Test Sets
Now that we've gotten a feel for the data in the previous part, we are ready to begin 
predictive modeling. When going about predictive modeling, especially when new data
isn't readily available, creating a training and test sets will help in understanding your 
model's predictive power. 

We will use the training set to train our model, essentially learning from data it's 
seeing to later infer data it hasn't seen yet. We want to avoid using our entire data-set 
on the training process, due to the process called overfitting. 

We run the risk of over-fitting our data when we train the model on our entire data-set,
especially true for this data-set since we don't have any other data to see how well our
data does. Over-fitting will cause our model to output strong predictive power, but only
for our training data usually performing poorly on new data. 

We avoid this through the use of the training and test set, where we measure the 
predictive power on the test set. This will be a good indicator of our model's 
performance, but test sets also have their limitations. This is where Cross Validation 
will come into play, but more on this later. 

We split the data-set into our training and test sets which will be (pseudo) randomly 
selected having a 80-20% split. 

NOTE: What we mean when we say pseudo-random is that we would want everyone 
who replicates this project to get the same results especially if you're trying to learn 
from this project. So we use a random seed generator and set it equal to a number of 
our choosing, this will then make the results the same for anyone who uses this 
generator, awesome for reproducibility. 



5 Random Forest 
Also known as Random Decision Forest, Random Forest is an entire forest of random 
uncorrelated decision trees. This is an extension of Decision Trees that will perform 
significantly better than a single tree because it corrects over-fitting. Here is a brief 
overview of the evolution of CART analysis:

 Single Decision Tree (Single tree) 

 Bagging Trees (Multiple trees) [Model with all features, M, considered at splits, 

where M = all features] 

 Random Forest (Multiple trees) [Model with m features considered at splits, 

where m < M, typically m = sqrt(M)] 

5.1 Bagging Trees
Decision Trees tend to have low bias and high variance, a process known as Bagging 
Trees (Bagging = Bootstrap Aggregating) was an extension that does random 
sampling with replacement where after creating N trees it classifies on majority votes. 
This process reduces the variance while at the same time keeping the bias low. 
However, a downside to this process is if certain features are strong predictors then 
too many trees will employ these features causing correlation between the trees. 

Thus Random Forest aims to reduce this correlation by choosing only a subsample of 
the feature space at each split. Essentially aiming to make the trees more independent
thereby reducing the variance. 

Generally, we aim to create 500 trees and use our m to be sqrt(M) rounded down. So 
since we have 30 features we will use 5 for my max_features parameter. we will be 

using the Entropy Importance metric. 

For this model we use an index known as the Information Gain. 

https://en.wikipedia.org/wiki/Information_gain_in_decision_trees


5.2 Variable Importance
A very useful feature from the tree analysis is that it allows extracting which features 
where the most important one. This is usually done using the concepts of Entropy and 
information gain. Thus, we can derive for each variable their (relative) variable 
importance and gives us and idea about which variables played an important role in 
the specific (!) forest that was created in the previous step.

Let’s start by creating the forest and then ordering all our variables (features), by 
importance using the entropy criterion. 

Terminal Output

Feature ranking:
1. The feature 'concave_points_worst' has a Information Gain of 0.143349
2. The feature 'area_worst' has a Information Gain of 0.123030
3. The feature 'perimeter_worst' has a Information Gain of 0.121727
…
29. The feature 'smoothness_se' has a Information Gain of 0.003234
30. The feature 'symmetry_mean' has a Information Gain of 0.003022

5.2.1 Feature Importance Visual

Terminal Output



5.3 Cross Validation
We employ a 10 fold cross validation method to get an accuracy estimation for our 
model. 

Terminal Output

Accuracy:  0.963 (+/-  0.013)

5.4 Conclusions for Random Forest
Our Random Forest performed pretty well, we have a personal preference to tree type 
models because they are the most interpretable and give insight to data that some 
other models don't (for instance K-NN). We were able to see which variables were 
important when the random forest was created and thus we can expand on our 
data/model if we choose too, through the variable importance of random forest. That 
can be an exercise for later on to see if choosing a subset of the data-set will help in 
prediction power. For now we am content with using the entire data-set for instructive 
purposes. 

Important to note, is that the random forest performed better in terms of false 
negatives, only slightly though. 

6 Conclusions of Part II 
When choosing models, it isn't just about having the best accuracy, we are also 
concerned with insight because these models can help tell us which dependent 
variables are indicators thus helping researchers in the respective field to focus on the 
variables that have the most statistically significant influence in predictive modeling 
within the respective domain. Although this data-set was engineered to facilitate 
machine learning processing employing the methodologies, we would say using both 
Random Forest and Neural Networks would help in predicting and getting insight 
into the data. 


	1 Introduction
	1.1 Project Extension: BIOLOGICAL MASS DATA

	2 PART I: Exploratory Analysis
	3 Visual Exploratory Analysis
	3.1 Overview: Nucleus Features vs. Diagnosis
	3.1.1 Observations

	3.2 Scatterplot Matrix
	3.3 Pearson Correlation Matrix
	3.4 Boxplots
	3.4.1 Normalization
	3.4.2 Box Plot of Transformed Data


	4 PART II: Machine Learning for Predictive Modeling
	4.1 Prerequisites: Training and Test Sets

	5 Random Forest
	5.1 Bagging Trees
	5.2 Variable Importance
	5.2.1 Feature Importance Visual

	5.3 Cross Validation
	5.4 Conclusions for Random Forest

	6 Conclusions of Part II

